The Method of Lower and Upper Solutions for Third-Order Periodic Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
Periodic Boundary Value Problems and Periodic Solutions of Second Order FDE with Upper and Lower Solutions∗
We use the monotone iterative technique with upper and lower solutions in reversed order to obtain two monotone sequences that converge uniformly to extremal solutions of second order periodic boundary value problems and periodic solutions of functional differential equations(FDEs).
متن کاملUpper and Lower Solutions Method for Fourth-order Periodic Boundary Value Problems
The purpose of this paper is to prove the existence of a solution of the following periodic boundary value problem ( u(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π) in the presence of an upper solution β and a lower solution α with β ≤ α, where f(t, u, v) satisfies one side Lipschitz condition.
متن کاملOn Second Order Periodic Boundary-value Problems with Upper and Lower Solutions in the Reversed Order
In this paper, we study the differential equation with the periodic boundary value u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π). The existence of solutions to the periodic boundary problem above with appropriate conditions is proved by using an upper and lower solution method.
متن کاملThe Method of Lower and Upper Solutions for nth – Order Periodic Boundary Value
In this paper we develop the monotone method in the presence of lower and upper solutions for the problem u(t) = f(t, u(t));u(a) − u(b) = λi ∈ R; i = 0, ..., n− 1. Where f is a Carathéodory function. We obtain sufficient conditions in f to guarantee the existence and approximation of solutions between a lower solution α and an upper solution β for n ≥ 3 either α ≤ β or α ≥ β. For this, we study...
متن کاملExistence result for impulsive third order periodic boundary value problems
This paper is devoted to the study of periodic boundary value problems for nonlinear third order di¤erential equations subjected to impulsive e¤ects. We provide su¢ cient conditions on the nonlinearity and the impulse functions that guarantee the existence of at least one solution. Our approach is based on a priori estimates, the method of upper and lower solutions combined with an iterative te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1995
ISSN: 0022-247X
DOI: 10.1006/jmaa.1995.1375